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In this paper we study a catalytically-activated A+A Q 0 reaction taking place
on a one-dimensional regular lattice which is brought in contact with a reservoir
of A particles. The A particles have a hard-core and undergo continuous
exchanges with the reservoir, adsorbing onto the lattice or desorbing back to the
reservoir. Some lattice sites possess special, catalytic properties, which induce an
immediate reaction between two neighboring A particles as soon as at least one
of them lands onto a catalytic site. We consider three situations for the spatial
placement of the catalytic sites: regular, annealed random, and quenched
random. For all these cases we derive exact results for the partition function,
and the disorder-averaged pressure per lattice site. We also present exact
asymptotic results for the particles’ mean density and the system’s compressi-
bility. The model studied here furnishes another example of a 1D Ising-type
system with random multisite interactions which admits an exact solution.

KEY WORDS: Random reaction/adsorption model; quenched and annealed
disorder.

1. INTRODUCTION

Reactions involving particles which may recombine only when some third
substance—the catalytic substrate—is present, (1, 2) but otherwise remain
chemically inactive, are ubiquitous in nature and also widely used in a



variety of technological and industrial processes. Within the past two
decades much effort has been put in understanding the peculiarities of
such catalytically-activated reactions (CARs). In particular, considerable
theoretical knowledge was gained from an extensive study of a particular
reaction scheme—the CO-oxidation in the presence of metal surfaces with
catalytic properties (3) (see also ref. 4 for a recent review). Remarkably,
refs. 3 have substantiated the emergence of an essentially different behavior
as compared to the predictions of the classical, formal-kinetics scheme and
have shown that under certain conditions such collective phenomena as
phase transitions or the formation of bifurcation patterns may take place. (3)

Prior to these works on catalytic systems, anomalous behavior was amply
demonstrated in other schemes, (5–7) involving reactions on contact between
two particles at any point of the reaction volume (i.e., ‘‘completely’’
catalytic sysems). It was realized (5–7) that the departure from the text-book,
formal-kinetic predictions is due to many-particle effects, associated with
fluctuations in the spatial distribution of the reacting species. This suggests
that, similar to such ‘‘completely’’ catalytic reaction schemes, the behavior
of the CARs may be influenced by many-particle effects.

Apart from many-particle effects, the behavior of the CARs might be
affected by the very structure of the catalytic substrate, which often cannot
be considered as being a well-defined geometrical object, but represents
rather an assembly of mobile or localized catalytic sites or islands, whose
spatial distribution is complex. (1) Metallic catalysts, for instance, are often
disordered compact aggregates, the building blocks of which are imperfect
crystallites with broken faces, kinks and steps. Usually only the steps are
active in promoting the reaction. In porous materials with convoluted sur-
faces, such as, e.g., silica, alumina or carbons, the effective catalytic sub-
strate is also only a portion of the total surface area because of the selective
participation of different sites in reaction. Finally, for liquid-phase CARs
the catalyst can consist of active groups attached to polymer chains in
solution.

Such complex morphologies render the theoretical analysis difficult.
There are only a few available studies which concern disordered substrates
such as found in the CO-oxidation scheme; here the disorder is believed to
affect mainly the particles’ adsorption and desorption. (8–16) On the other
hand, for the situations in which the spatial distribution of the catalyst
is random, only empirical approaches have been used, based mostly on
heuristic concepts of effective reaction order or on phenomenological gen-
eralizations of the formal-kinetic ‘‘law of mass action’’ (see, e.g., refs. 1
and 2 for more details). The important outcome of such descriptions is that
they provide an evidence of the existing correlations between the mor-
phology of the chemically reactive environment and reaction kinetic and
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steady-state properties. On the other hand, their shortcoming is that they
do not explain the mechanisms underlying the anomalous kinetic and sta-
tionary behavior. In this regard, exact analytical solutions of even some-
what idealized or simplified models, are already highly desirable since such
studies may provide an understanding of the effects of different factors on
the properties of the CARs.

In this paper we study the catalytically-activated annihilation A+A Q 0
reaction in a simple, one-dimensional model with different (regular or
random) distributions of the catalysts, appropriate to the just mentioned
situations with the catalytically-activated reactions assisted by the active
groups attached to polymer chains. More specifically, we consider here the
A+A Q 0 reaction on a one-dimensional regular lattice which is brought
in contact with a reservoir of A partilces. Some portion of the lattice sites
(marked by crosses in Fig. 1) possesses special ‘‘catalytic’’ properties such
that they induce an immediate reaction A+A Q 0, when at least one of two
neighboring adsorbed A particles sits on a catalytic site. In this case these
two particles react and instantaneously leave the chain.

In regard to the distribution of the catalytic sites, we focus here on
three different situations. First, we consider the case when the catalytic sites
are placed periodically, forming a regular sublattice. Next, we turn to the
disordered case. We analyse first the case of annealed disorder and furnish
an exact solution. Lastly, we analyse the behavior in the most complex case
of quenched disorder, for which situation an exact solution is also derived.

We note finally that the kinetics of A+A Q 0 reactions involving dif-
fusive A particles which react upon encounters on randomly placed cata-
lytic sites has been discussed already in refs. 20–22, and a rather surprising
behavior has been found, especially in low-dimensional systems. A much
simplier equilibrium model of an A+A Q 0 reaction on a 1D chain with
randomly placed catalytic segments has been solved in refs. 17 and 18, by
noticing that here the average pressure per lattice site coincides exactly with
the Lyapunov exponent of a product of random two-by-two matrices,
obtained in ref. 19. Additionally, the steady-state properties of contact
A+A Q 0 reactions between diffusive A particles, or A+A Q 0 reactions
between immobile A particles reacting via long-range reaction probabilities
in systems with external particles input have been presented in refs. 23 and
24, 25, respectively, which analysis has revealed non-trivial ordering phe-
nomena with anomalous input intensity dependence of the mean particle
density. This anomalous behavior agrees with earlier experimental obser-
vations. (26) For completely catalytic 1D systems, the kinetics of A+A Q 0
reactions with immobile A particles undergoing cooperative desorption has
been discussed in refs. 27–29. Exact solutions for A+A Q 0 reactions in
1D completely catalytic systems in which A particles perform conventional
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diffusive or subdiffusive motion have been presented in refs. 30 and 31,
respectively.

The paper is structured as follows: In Section 2 we formulate our
model and introduce the basic notations. Next, in Section 3 we focus on
situations with regular placements of catalytic sites. We calculate exactly
the partition function of the model, the pressure per site, and present as
well explicit results for the particles’ mean density in the thermodynamic
limit from which we determine the compressibility of the system. In Sec-
tion 4 we study the behavior of the system in the case of random annealed
distributions of the catalytic sites. We show that in this case the model
reduces to a one-dimensional lattice gas with an effective three-particle
repulsive interaction. We develop a combinatorial formulation of the
model which allows us to obtain an exact solution. We present thus an
exact expression for the disorder-averaged pressure, as well as exact
asymptotic expansions for the mean particle density and the compressi-
bility. In Section 5 we turn to the very complex situation where the random
distribution of catalytic sites is quenched. For this case, averaging the
logarithm of the partition function over the states of the quenched random
variables describing the catalytic properties of lattice sites, we find that the
problem reduces in finite lattices with a fixed number of catalytic sites to
an exact enumeration of all possible interconnected clusters. The weights
of such clusters are calculated exactly in terms of a certain combinatorial
procedure, and we find eventually an exact expression for the disorder-
averaged pressure in the quenched disorder case. Additionally, we evaluate
exact asymptotic expansions for the mean-particle density and the com-
pressibility. We show that the behavior of these properties differs substan-
tially, depending on whether the disorder is annealed or quenched. In par-
ticular, in systems with annealed disorder the mean particle density tends
to unity when the chemical potential m Q . for any p < 1, where p is the
mean density of catalytic sites. On the other hand, mean particle density in
the quenched disorder case tends to a finite value (1 − p+p2)/(1+p2) < 1 as
m Q .. As well, in the annealed disorder case the compressibility appears to
be a non-monotonic function of p for any m, while in the quenched disorder
case the compressibility shows a non-monotonic behavior as a function of
p only for m [ mcrit=b−1 ln(2), where b−1 is the temperature. Lastly, in
Section 6 we conclude with a summary of results. Details of intermediate
calculations are summarized in the Appendices A, B, and C.

2. THE MODEL

Consider a one-dimensional, regular lattice containing N adsorption
sites (Fig. 1), which is brought in contact with a reservoir of identical,
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1 N N+1

VAPOR
(a)

0

Fig. 1. One-dimensional lattice of N adsorption sites in contact with a vapor phase. The
filled circles denote A particles with hard-cores. The crosses denote the adsorption sites with
catalytic properties. (a) denotes a ‘‘forbidden’’ particle configuration. The sites i=0 and
i=N+1 are always unoccupied and non-catalytic, i.e., n0=nN+1=0 and z0=zN+1=0.

non-interacting, hard-core A particles—a vapor phase, maintained at a
constant chemical potential m. The A particles from the vapor phase can
adsorb onto vacant adsorption sites and desorb back to the reservoir. The
occupation of the ith adsorption site is described by the Boolean variable ni,
such that

ni=˛1, if the ith site is occupied,

0, otherwise.

For computational convenience, we also add two special, boundary sites
i=0 and i=N+1, and stipulate that these sites are always unoccupied,
n0=nN+1=0.

Suppose next that some of the adsorption sites possess ‘‘catalytic’’
properties (crosses in Fig. 1) in the sense that they induce an immediate
reaction A+A Q 0 between neighboring A particles; that is, if at least one
of two neighboring adsorbed A particles sits on a catalytic site, these two
particles react and instantaneously leave the chain (desorb back to the
reservoir). To specify the catalytic sites, we introduce the quenched vari-
able zi, so that

zi=˛1, if the ith site is catalytic, i=1, 2,..., N,

0, otherwise.

The sites at the extremities of the chain are supposed to be non-catalytic,
i.e., z0=0 and zN+1=0. As for the segment [1, N], we will consider
several possible ways of spatial placement of catalytic sites, namely, regular
and random.

For a given distribution of catalytic sites, the partition function ZN(z)
of the system under study can be written as follows:

ZN(z)= lim
l Q .

C
{ni}

exp 1bm C
N

i=1
ni − l C

N

i=1
zi ni(ni − 1+ni+1)2 , (1)
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where the summation extends over all possible configurations {ni}, m is the
chemical potential which accounts for the reservoir pressure and for the
particles’ preference for adsorption. The parameter l stands for the cataly-
tic activity, which is here taken to be infinitely large. Such a choice implies
that the reaction between two neighboring A’s, in which pair at least one of
A’s sits on a catalytic site, takes place instantaneously. Note that here
ZN(z) is a functional of the configuration z={zi}.

We stop to note that an analysis of general reaction and diffusion
problems was previously done using effective Hamiltonians of spin systems.
Examples are, e.g., the works by Doi, (32) Zeldovitch and Ovchinnikov, (33)

Alcaraz et al., (34) and Simon. (35) Our procedure here is different in that we
consider equilibrium systems and take the limit l Q ., which allows us to
present the basic results in closed form.

Now, taking into account that

lim
l Q .

exp( − lzi ni(ni − 1+ni+1)) — (1 − zi ni ni − 1)(1 − zi ni ni+1), (2)

and setting

z=exp(bm), (3)

we can rewrite Eq. (1) as:

ZN(z)=C
{ni}

D
N

i=1
zni(1 − zi ni ni − 1)(1 − zi ni ni+1). (4)

Hence, any two neighboring sites i and i − 1 appear to be coupled by a
factor (1 − ni ni − 1) when at least one of these sites is catalytic. These
coupling factors are depicted in Fig. 1 as arcs connecting neighboring sites
and signify that configurations {ni} in which the occupation variables ni

and ni − 1 assume simultaneously the value 1 are excluded. We introduce
now the notion of ‘‘cluster,’’ as being a set of sites, all connected to each
other consecutively by arcs. Thus, a K-cluster contains K sites. Note that
the boundary between adjacent clusters is given by a pair of two neighbor-
ing non-catalytic sites, i.e., by two consecutive variables zi and zi+1 which
are both equal to zero (see Fig. 1). Now, the chain decomposes into
disjunct clusters, and consequently, the partition function ZN(z) factorizes
into independent terms, such that each one depicts its corresponding
cluster.
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It may be also instructive to rewrite Eq. (1) in terms of the Ising-type
spin variables si=(2ni − 1), such that si= ± 1. In terms of these variables,
ZN(z) of Eq. (1) reads:

ZN(z)= lim
l Q .

exp 1 (bm − lp)
N
2
2 C

{si}
exp 1 C

N

i=1
mi si+ C

N

i=1
Ji si si+1

2 (5)

where p denotes the mean density of catalytic sites, p=N−1 ;N
i zi, while

mi=
bm

2
−

l

4
(2zi+zi − 1+zi+1) and Ji=−

l

4
(zi+zi+1). (6)

Consequently, the model under study can be also thought of as a version
of a one-dimensional Ising-type model with site-dependent magnetic fields
and site-dependent couplings (see, e.g., some seminal works, (19, 36, 37) as well
as refs. 38 and 39 for a recent review). Note, however, that in our case both
the fields and the couplings are non-local, and that the local energy Ei,
Ei=−mi si − Ji si si+1, can assume several different values, depending on
the occupation variables of the neighboring sites and on their catalytic
properties.

We close this section by mentioning the results of the conventional
mean-field approach, which depicts the evolution of our system. (1, 2)

Discarding correlations between the occupation of neighboring sites, i.e.,
setting ni=n̄, one writes the following balance equation

ṅ̄=−pKn̄2+gads(1 − n̄) − gdes n̄, (7)

where the overdot denotes the time derivative, K stands for the elementary
reaction constant, p is the mean density of catalytic sites (introduced to
account for the reduction in the reaction rate due to the partial chain
coverage by catalytic sites), while the second and the third terms on the
r.h.s. of Eq. (7) correspond to the usual Langmuir adsorption/desorption
events; here gads and gdes are the adsorption and desorption rates, respec-
tively, gads/gdes=z.

Equation (7) has the following equilibrium solution

n̄=
(gads+gdes)

2pK
3= 4pKgads

(gads+gdes)2+1 − 14 . (8)

In the limit KQ ., (which is the limit of interest in the present paper),
and with p and gads kept finite one finds that n̄ Q 0; from Eq. (8) n̄ vanishes
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as n̄ ’ `gads/pK. In the following we proceed to show that the actual
behavior of the mean density of the A particles turns out to be very differ-
ent from Eq. (8); this is due to the emerging correlations between the A
particles. Note also that in the limit K — 0 (suppressed reaction), one
recovers from Eq. (8) the classic Langmuir result n̄=z/(1+z). (1, 2)

3. REGULAR PLACEMENT OF CATALYTIC SITES

To fix the ideas, consider first a situation in which the catalytic sites
are placed periodically, with period L, so that zi obeys:

zi=d(i, nL+1), with n=0, 1,..., 5N − 1
L

6 , (9)

where [x] denotes the integer part of the number x, and d(k, m) is the
Kroneker-delta symbol,

d(k, m)=
1

2pi
G
C

dy

y1+k − m=˛1, if k=m,

0, otherwise,

where C stands for any closed contour which encircles the origin counter-
clockwise while (k, m) ¥ Z2.

We have now to distinguish between two situations: namely, when
L \ 3 and when L=1 or L=2. In the former case, evidently, the factors
(1 − zi ni ni ± 1) in Eq. (4) are non-overlapping (see Fig. 2); then the partition
function decomposes into elementary three-clusters centered around each
catalytic site and (possibly) into uncoupled, ‘‘free’’ sites, i.e., sites unaf-
fected by any of the factors (1 − zi ni ni ± 1). On the other hand, in the cases
L=1 and L=2 we deal with totally interconnected clusters, spanning the
entire chain, as one can deduce from Fig. 3. In fact, the role of L=1 and
L=2 is, chemically speaking, identical.

N N+1

VAPOR
(a)

10

Fig. 2. Periodic placement of the catalytic sites with the period L=4. (a) denotes a forbid-
den particle configuration.

548 Oshanin et al.



N N+1

VAPOR
(a) (a)

10

Fig. 3. Periodic placement of the catalytic sites with the period L=2. In this case all sites
are coupled by factors (1 − ni ni − 1) and hence the occupation variables of any two neighboring
sites can not assume the value 1 simultaneously; (a) denotes such ‘‘forbidden’’ particle con-
figurations.

3.1. Periodic Case with L \ 3

In the case L \ 3 the partition function in Eq. (4) decomposes into the
product

ZN(z)=Z (reg)
N (L)=ZN3

3 ZN2
2 ZN1

1 , (10)

where the superscript ‘‘(reg)’’ signifies that we deal with the regular case,
and where ZK, K=1, K=2, and K=3, are the partition functions of one-,
two-, and three-clusters, while NK, K=1, 2, 3, stands for the numbers of
such clusters in the N-chain, respectively. Now:

N3=5N − 1
L

6− d 1N − 1
L

, 5N − 1
L

62 ; N2=1+d 1N − 1
L

, 5N − 1
L

62 ,

(11)

and

N1=N − 2+d 1N − 1
L

, 5N − 1
L

62− 3 5N − 1
L

6 , (12)

where we have used the evident ‘‘conservation’’ law

3N3+2N2+N1=N. (13)

Note, however, that the number of the two-clusters is not extensive, i.e., it
does not grow with N: Such clusters can be present only on the boundaries,
i.e., N2=2 when (N − 1)/L is an integer and N2=1 otherwise. Moreover,

Z1= C
{n1=0, 1}

zn1=(1+z); Z2= C
{n1, n2=0, 1}

zn1+n2(1 − n1n2)=(1+2z),
(14)
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and

Z3= C
{n1, n2, n3=0, 1}

zn1+n2+n3(1 − n1n2)(1 − n2n3)=(1+3z+z2). (15)

Consequently, in the case of a regular, periodic placement of catalytic sites
with period L, L \ 3, we can calculate the pressure P (reg)(L) per site from
the relation:

bP (reg)(L)= lim
N Q .

ln Z (reg)
N (L)
N

, (16)

which yields:

bP (reg)(L)= lim
N Q .

1N3

N
ln Z3 −

N2

N
ln Z2 −

N1

N
ln Z1

2

=p ln(1+3z+z2)+(1 − 3p) ln(1+z), (17)

where p=1/L is the density of catalytic sites.
The averaged density of adsorbed particles obeys

n (reg)(L)=
1
N

C
N

i=1
ni=

z
N

d
dz

ln Z (reg)
N (L), (18)

and hence, in the limit N Q . it follows that

n (reg)(L)=(1 − 3p)
z

1+z
+p

3z+2z2

1+3z+z2 . (19)

We stop to note that in the limit p=0 (i.e., that of a completely non-
catalytic chain) Eq. (19) reduces to the standard Langmuir result. On the
other hand, when p=1/3 the number of free-sites in the periodic chain
vanishes and the Langmuir contribution gets equal to zero; in this case the
chain is composed totally of three-clusters. In this case, for very large z the
occupation of lattice sites by adsorbed molecules equals 2/3, as it should.

Finally, we have that the compressibility kT, defined as

b−1kT=
1
n2

“n
“m

=
z
n2

“n
“z

(20)
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obeys

b−1k (reg)
T (L)=

1+6z+11z2+6z3+z4 − pz(8+8z+19z2)
z(1+3z+z2 − 4pz − pz2)2 . (21)

For p=0 the last equation reduces to the standard Langmuir result,
k (lan)

T =b/z.

3.2. Periodic Cases with L=1 or L=2

We note first that since (1 − ni ni+1)2=(1 − ni ni+1), we evidently have
that

ZN — Z (reg)
N (L=1)=Z (reg)

N (L=2)

= C
{ni}, i=1,..., N

z ; N
i=1 ni D

N

i=1
(1 − ni ni+1) :

nN+1=0
. (22)

We hence conclude that the L=1 and the L=2 periodic systems are
chemically equivalent.

Now, we focus on the derivation of the form of ZN according to
Eq. (22). To do this, we proceed as follows: performing first the averaging
over the states of the variable nN, we have that ZN can be written as

ZN=ZN − 1+z C
{ni}, i=1,..., N − 1

z ; N − 1
i=1 ni D

N − 2

i=1
(1 − ni ni+1)(1 − nN − 1), (23)

where ZN − 1 obeys

ZN − 1= C
{ni}, i=1,..., N − 1

z ; N − 1
i=1 ni D

N − 1

i=1
(1 − ni ni+1) :

nN=0
, (24)

and is hence the partition function of a chain consisting of N − 1 sites. We
notice next that the second term on the r.h.s. of Eq. (23) vanishes when
nN − 1=1; thus it can be written as

C
{ni}, i=1,..., N − 1

z ; N − 1
i=1 ni D

N − 2

i=1
(1 − ni ni+1)(1 − nN − 1)

= C
{ni}, i=1,..., N − 2

z ; N − 2
i=1 ni D

N − 2

i=1
(1 − ni ni+1) :

nN − 1=0
, (25)
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where the expression on the right-hand-side is, evidently, the partition
function of a chain containing N − 2 sites. Consequently, the partition
function of an N-site chain obeys the following recursion:

ZN=ZN − 1+zZN − 2 (26)

whose first three terms are given by Eqs. (14) and (15).
Next, to determine ZN explicitly for arbitrary N we introduce the

following generating function

H(y)= C
.

N=1
ZNyN. (27)

Then, multiplying both sides of Eq. (26) by yN − 2 and performing the
summation, we obtain the following explicit result for H(y):

H(y)=(zy2+(1+z) y)(1 − y − zy2)−1

=
(zy2+(1+z) y)

`1+4z
1 1

y+y1
+

1
y2 − y

2 , (28)

where y1 and y2 are given by

y1=
1
2z

(`1+4z+1) (29)

and

y2=
1
2z

(`1+4z − 1). (30)

Next, expanding the terms in the second line on the r.h.s. of Eq. (28) in a
Taylor series in powers of y and gathering terms entering with the same
power, we find that ZN obeys

ZN=
1+2z+`1+4z

2 `1+4z yN
2

LN, (31)

where

LN=11 − (−1)N (1+2z − `1+4z)

(1+2z+`1+4z)
1y2

y1

2N2 . (32)
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We recall that the ZN are, of course, polynomial functions of the activity z;
expanding the r.h.s. of Eq. (31) in powers of z, we get

ZN= C
[(N+1)/2]

l=0

1N − l+1
l

2 z l, (33)

where (N
l ) denote the binomial coefficients,

1N
l
2=˛N!/l! (N − l)!, for N \ l,

0, otherwise.

For large values of z, it might be more convenient to use another represen-
tation; subtracting in Eq. (33) z (N+1)/2 and summing up the remaining
terms, we find that ZN are given by

ZN=z (N+1)/2FN+2(1/`z), (34)

where Fn(x) are the Fibonacci polynomials, (40) defined explicitly by

Fn(x)= C
[(n − 1)/2]

l=0

1n − l − 1
l

2 xn − 2l − 1. (35)

Finally, noticing that for z < . one has (y2/y1) < 1 and hence, that
(y2/y1)N vanishes exponentially with N as N Q ., we find in the cases
when L=1 and L=2 that the pressure per site obeys, using Eq. (16):

bP (reg)(L=1 or 2)=ln 1`1+4z+1

2
2 , (36)

while the average density in an infinite chain is, using Eq. (18):

n (reg)(L=1 or 2)=1 −
2z

1+4z − `1+4z
. (37)

In the limit z=., the roots y1 and y2 are equal, y1=y2, this signals the
emergence of long-range order. Actually, in this case n (reg)(L=1 or 2)
=1/2 and the particles’ distribution on the lattice is periodic.

Finally, to close this section, we derive the compressibility of the
particle phase. In the thermodynamic limit, for regular placement of the
catalytic sites with the period L=1 or L=2 it obeys:

b−1k (reg)
T (L=1 or 2)=

2z

`1+4z(1+2z − `1+4z)
. (38)
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Note that contrary to the expression in Eq. (21) which holds for L \ 3, here
k (reg)

T (L=1 or 2) is a non-analytic function of the activity z when z Q ..

4. RANDOM PLACEMENT OF CATALYTIC SITES.

ANNEALED DISORDER

Consider next the situation with annealed disorder, which is realized,
for instance, when the catalytic property may move (diffuse) very quickly.
In this case, the disorder-average pressure P (ann)(p) per site and the average
density are given by, respectively,

P (ann)(p)= lim
N Q .

lnOZN(z)P
bN

, (39)

and

n (ann)(p)=
1
N

C
N

i=1
ni=bz

d
dz

P (ann)(p), (40)

where ZN(z) is again the partition function of Eq. (1).
We can now average directly the partition function in Eq. (1) over the

placement of the sites with catalytic property:

OZN(z)P= lim
l Q .

C
{ni}

exp 1bm C
N

i=1
ni
27exp 1 − l C

N

i=1
zi ni(ni − 1+ni+1)28

= lim
l Q .

C
{ni}

exp 1bm C
N

i=1
ni
2 D

N

i=1
Oexp( − lzi ni(ni − 1+ni+1))P

=C
{ni}

z ; N
i=1 ni lim

l Q .

D
N

i=1
(p exp( − lni(ni − 1+ni+1))+1 − p). (41)

Noticing next that

lim
l Q .

(p exp( − lni(ni − 1+ni+1))+1 − p)=˛1 − p, if ni(ni − 1+ni+1) > 0,

1, if ni(ni − 1+ni+1)=0,

and hence, that

lim
l Q .

(p exp( − lni(ni − 1+ni+1))+1 − p)=(1 − p)ni(1 − (1 − ni − 1)(1 − ni+1)), (42)
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we find that the averaged partition function in Eq. (1) attains the form

OZN(z)P=C
{ni}

z ; N
i=1 ni(1 − p) ; N

i=1 Yi, (43)

where Yi is a Boolean variable:

Yi=(ni ni+1+ni ni − 1 − ni − 1ni ni+1)=˛1, if ni(ni − 1+ni+1) > 0,

0, if ni(ni − 1+ni+1)=0.

Evidently, Yi is non-local and depends on the environment of the ith
site. As a matter of fact, the local energy Ei at the ith site, Ei=−bmni −
ln(1 − p)(ni ni+1+ni ni − 1 − ni − 1ni ni+1), assumes 8 different values depending
on ni − 1, ni, and ni+1. Before we proceed further, it might be also instructive
to rewrite Eq. (43) in terms of the spin variables si. Then Eq. (43) takes the
form

OZN(z)P=exp 11bm+
3
4

ln(1 − p)2 N
2
2 C

{si}
exp 1bmŒ C

N

i=1
si+J1 C

N

i=1
si si+1

− J2 C
N

i=1
si − 1 si+1 − J3 C

N

i=1
si − 1 si si+1

2 , (44)

where

mŒ=m+
5

8b
ln(1 − p); J1=

ln(1 − p)
4

< 0; and J2=J3=
ln(1 − p)

8
< 0.

(45)

As one may notice, the expression in Eq. (44) represents a combination of
two well-known Ising-type models: namely, the first three terms in the
exponent define the antiferromagnetic ANNNI (axial next-nearest neighbor
Ising) chain. (41) In our case, the competition ratio k=J2/J1 equals k=1/2,
which is, in fact, a non-trivial special point (the so-called multiphase
point (42)) of the ANNNI model. On the other hand, the fourth term in the
exponent corresponds to the three-spin interaction model. (43) Both models
have been extensively studied within the last two decades in various con-
texts (42, 43) and show interesting equilibrium and dynamic properties, see
e.g., refs. 44 and 45. We are, however, unaware of an exact solution of the
one-dimensional combined model of Eq. (44). Below we will furnish such
an exact solution using a combinatorial approach.

Note now that Yi always equals zero for unoccupied sites, (ni=0),
but attains the value Yi=1 only for occupied sites, (ni=1), which have at
least one (or two) occupied neighboring sites (see Fig. 4).
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ni

Ψ i

Fig. 4. Values of the variable Yi corresponding to a given configuration {ni}.

Otherwise, for isolated occupied sites (elementary sequences with
(ni − 1=0, ni=1, ni+1=0)) the variable Yi equals 0. Consequently, for any
given realization {ni}, one has that

C
N

i=1
Yi=N+[{ni}] −Nis[{ni}], (46)

where N+[{ni}] is the number of lattice sites on which (in a given realiza-
tion {ni}) the occupation variable ni assumes the value 1, while Nis[{ni}]
is the realization-dependent number of isolated occupied sites (elementary
cells of the form (0, 1, 0)). Hence, the partition function in Eq. (43) can be
rewritten as

OZN(z)P=C
{ni}

(z(1 − p))N+[{ni}] (1 − p)−Nis[{ni}]. (47)

Next, ordering the entire set of 2N different realizations {ni} with respect to
the total number of adsorbed particles which they contain, i.e., N+[{ni}],
we can recast Eq. (47) into the form:

OZN(z)P= C
N

N+=0
(z(1 − p))N+ C

N − N++1

m=0
(1 − p)−m Mm(N+ | N), (48)

where Mm(N+ | N) stands for the number of realizations {ni} that have a
fixed N+ and contain exactly m elementary cells (0, 1, 0).

4.1. Calculation of Mm(N+ | N )

To evaluate Mm(N+ | N) we now proceed as follows. Let us consider a
given realization {ni} with N+ filled (and N− =N − N+ vacant) sites and
specify the lattice positions of the vacant sites by introducing a set of
intervals {lj}, j=1,..., N− +1, such that the interval l1 connects a boundary
site i=0 with the first vacant site, the interval l2 connects the first vacant
site with the second one, and etc, while the last interval lN− +1 connects the
last vacant site with the boundary site i=N+1 (see Fig. 5).
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l l l1

10   N N+1

l  l2 3 4 5

Fig. 5. Definition of a given configuration {ni} in terms of the intervals {li} connecting
sequentially unoccupied lattice sites.

These intervals, which uniquely define the positions of the vacant sites
in each given realization {ni}, obey the ‘‘conservation law:’’

l1+l2+l3+ · · · +lN− +1=N+1. (49)

Then, since each interval containing exactly two lattice units corresponds to
an isolated occupied site, Mm(N+ | N) equals the number of different solu-
tions of Eq. (49), constrained by the condition that in each sequence {li}
obeying Eq. (49) m of the N− +1 intervals are equal to 2, while the rest can
assume any value except 2. Hence, Mm(N+ | N) can be represented as

Mm(N+ | N)=1N− +1
m

2 Pm(N+ | N). (50)

Here the binomial coefficient accounts for all possible choices of m inter-
vals from the set of N− +1 intervals, while Pm(N+ | N) stands for the
number of different solutions of the equation

l1+l2+l3+ · · · +lN− − m+1=N − 2m+1, (51)

where each of intervals lk, k=1, 2,..., N− − m+1, can assume one of the
values lk=1, 3, 4, 5,... .

Making use of the integral representation of the lattice delta-function
in Eq. (10), we can write Pm(N+ | N) as

Pm(N+ | N)=
1

2pi
G
C

dy

y
y−(N − 2m+1) 3C

^

l1

· · · C
^

lN − − m+1

y (l1+l2+l3+ · · · +lN − − m+1)4 ,

(52)

where the hat above the summation symbol signifies that summation runs
over all possible values lk=1, 3,..., ., excluding the value lk=2. Perform-
ing the summation, we find

Pm(N+ | N)=
1

2pi
G
C

dy

y
y (N+ − m)SN − N++1 − m

y , (53)
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where

Sy=((1 − y)−1 − y). (54)

4.2. Explicit Form of OZN(z)P

Substituting Eqs. (53) and (50) into Eq. (48), we find that the partition
function obeys

OZN(z)P=
1

2pi
G
C

dy

y
SN+1

y C
N

N+=0

1z(1 − p)
ySy

2N+

C
N− +1

m=0

1N− +1
m

21 y

(1 − p) Sy

2m

,

(55)

which yields, upon summing over m and N+, the following result

OZN(z)P=
2(1 − p)
9(−Q) p

3−
1 − 3 `− Q cos(1

3 arccos(R/`− Q3))

1+2 cos(2
3 arccos(R/`− Q3))

1z(1 − p)
t1

2N+2

+
1+3 `− Q sin(1

3 arcsin(R/`− Q3))

2 sin(p

6+
2
3 arccos(R/`− Q3)) − 1

1z(1 − p)
t2

2N+2

−
1+3 `− Q sin(1

3 arcsin(R/`− Q3))

1 − 2 sin(p

6 − 2
3 arccos(R/`− Q3))

1z(1 − p)
t3

2N+24 , (56)

where R and Q are auxiliary functions, which obey

Q=−
1
9

−
(1 − p)

3p
(1+z(1 − p)) [ 0, (57)

and

R=
1
27

+
1
6
1 (1 − p)

p
(1+z(1 − p)) −

3z(1 − p)2

p
2 . (58)

Equation (56) defines OZN(z)P for arbitrary values of p, z, and chain’s
length N. The derivation of Eq. (56) is presented in Appendix A.

4.3. The Thermodynamic Limit N Q /

We turn next to the thermodynamic limit aiming to calculate the dis-
order-averaged pressure per site in the annealed disorder case and the mean
density of adsorbed particles. In the limit N Q . only the smallest root in
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(3)

Fig. 6. Plot of (ti − 1/3)/2 `− Q, i=1, 2, 3, versus the variable X=R/`− Q3. The dotted
line (1) gives (t1 − 1/3)/2 `− Q, the solid line (2) gives (t2 − 1/3)/2 `− Q, and the dashed
line (3) gives (t3 − 1/3)/2 `− Q, respectively.

absolute value matters. To select the appropriate root, it suffices to plot the
combination (ti −1/3)/2 `−Q, i=1, 2, 3, versus the variable x=R/`−Q3,
which is defined on the interval [ − 1, 1]. This plot is presented in Fig. 6
and shows that the smallest root is t=t2.

Consequently, taking into account that

1+3 `− Q sin(1
3 arcsin(R/`− Q3))

2 sin(p

6+
2
3 arccos(R/`− Q3)) − 1

\ 0, (59)

is positive definite, we find from Eq. (39) that the pressure per site is given
by

bP (ann)(p)=ln 1z(1 − p)
t2

2

=− ln 1 (1 − 6 `− Q sin(1
3 arcsin(R/`− Q3)))

3z(1 − p)
2 , (60)

which expression determines P (ann)(p) for arbitrary values of the param-
eters p and z.
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Consider now the form of P (ann)(p) in the limits p Q 0 and p ’ 1. In the
limit of a vanishingly small concentration of catalytic sites, we have from
Eq. (60) that:

bP (ann)(p)=ln(1+z) −
z2(2+z)
b(1+z)3 p+O(p2). (61)

Note that the first term in the last equation is, as it should be, just the
standard Langmuir adsorption isotherm.

In the case p ’ 1, we expand first t2/z(1 − p) in powers of (1 − p). This
yields,

t2

z(1 − p)
=

`1+4z − 1

2z
−

(1+z) `1+4z − 3z − 1

2z `1+4z
(1 − p)2+O((1 − p)3),

(62)

which expansion, as one can check by comparing the first and the second
terms in Eq. (62), makes sense only when (1 − p) ° (4/z)1/4. As a matter
of fact, p=1 has here a special role, as will be shown in the following.
Then, we find that the pressure per site is

bP (ann)(p)=ln 1`1+4z+1

2
2+

4z2+5z − 3z `1+4z+1 − `1+4z

(`1+4z − 1)(1+4z)
(1 − p)2

+O((1 − p)3). (63)

Note now that the first term in Eq. (63), which defines the disorder-
averaged pressure per site in the limit p=1, coincides exactly with the result
we obtained earlier in the case of a regular placement of catalytic sites with
the period L=1 (or L=2), Eq. (36). As a matter of fact, one could notice
that the partition function in the annealed-disorder case, Eq. (48), will coin-
cide for p=1 with the partition function for the regular case, Eqs. (31) and
(32), by just analysing the behavior of the coefficients Mm(N+ | N), Eqs. (50)
and (53). To show this, we note first that from Eqs. (50) and (53) one has
that Mm(N+ | N) — 0 for m > N+. This is, of course, quite evident, if we
recall that Mm(N+ | N) stands for the number of realizations {ni} having a
fixed number N+ of adsorbed particles and a fixed number m of elementary
cells containing one adsorbed particle surrounded by two vacant sites: hence,
the number of realizations {ni} in which m exceeds N+ equals zero. Further
on, one notices that when p=1, in Eq. (48) only the terms Mm=N+

(N+ | N)
with N+ [ N−+1=N+1− N+ matter. Hence Eq. (48) becomes

OZN(z)P= C
[(N+1)/2]

N+=0
MN+

(N+ | N) zN+, (64)
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where

Mm=N+
(N+ | N)=

1
2pi

1N− +1
N+

2 G
C

dy

y
SN− +1 − N+

y

=
1

2pi
1N− +1 − N+

N+

2 G
C

dy

y
11+ C

.

k=2
yk2N− +1 − N+

— 1N− +1 − N+

N+

2 . (65)

On comparing Eqs. (64) and (65) with Eq. (33), we have in the limit p=1
that the partition function, (and hence, the pressure per site), in the
annealed disorder case coincides with the partition function of a chain on
which the catalytic sites are placed regularly with period L=1.

Finally, differentiating Eq. (60) with respect to the variable z and
making use of Eq. (40), we find that in the annealed disorder case the
average density of adsorbed particles obeys:

n (ann)(p)=1+
3z(1 − p)2

1 − 6 `− Q sin(1
3 arcsin(R/`− Q3))

×5A sin(1
3 arcsin(R/`− Q3))

+
B

`1+R2/Q3
cos(1

3 arcsin(R/`− Q3))6 , (66)

where

A=(p(3zp2 − 2p(1+3z)+3(1+z)))−1/2, (67)

and

B=
3
2

(2zp2+p(5 − 4z)+2z − 7)
(3zp2 − 2p(1+3z)+3(1+z))2 . (68)

Note that the result in Eq. (66) differs from the mean-field prediction n̄ — 0,
which follows from Eq. (8) for instantaneous reactions, K=..

In Fig. 8 we present a plot of n (ann)(p) versus p for different values of
the activity z. In Fig. 8 we also compare the behavior of n (ann)(p) with the
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behavior found in the case of quenched disorder (see the next section). In
the limits p ° 1 and p ’ 1, we find that n (ann)(p) follows, respectively,

n (ann)(p)=
z

1+z
−

(4+z) z2

(1+z)4 p+O(p2), (69)

and

n (ann)(p)=1 −
2z

1+4z − `1+4z
+

2z2

(1+4z)3/2 (1 − p)2+O((1 − p)3). (70)

Note that the first term in Eq. (69) is, as it should be, just the Langmuir
adsorbtion isotherm, while the first term in Eq. (70) coincides with our
earlier result for the average density of adsorbed particles on the periodic
chain with L=1 or L=2, see Eq. (37).

Lastly, we analyse the behavior of the compressibility k (ann)
T (p) for the

annealed disorder situation:

b−1k (ann)
T (p)=

z
(n (ann)(p))2

“n (ann)(p)
“z

. (71)

We find that k (ann)
T (p) shows the following asymptotical behavior: For

p ° 1 we have

b−1k (ann)
T (p)=

1
z
+

z(7+z)
(1+z)3 p+O(p2), (72)

while for p ’ 1 the compressibility obeys

b−1k (ann)
T (p)=b−1k (reg)

T (L=1 or 2)+
4z2

(1+4z)3/2 (1 − p)2+O((1 − p)3).
(73)

Here k (reg)
T (L=1 or 2) is as previously defined, Eq. (38), and represents the

compressibility of a completely catalytic chain. Note that the result in
Eq. (73) signifies that in the annealed disorder case the compressibility is a
non-monotonic function of the mean density p of catalytic sites. This can
be seen immediately if one notices that, first, for any fixed z, one has
k (reg)

T (L=1 or 2) \ k (lan)
T =b/z, (or in other words, that for any fixed z the

compressibility of a non-catalytic (Langmuir) system is always smaller than
the compressibility of a completely catalytic system) and second, that
k (ann)

T (p) approaches k (reg)
T (L=1 or 2) from above, since the function

4z2/(1+4z)3/2 is always positive.
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We close this section with some comments concerning the large-z
behavior of P (ann)(p) and n (ann)(p). As a matter of fact, it appears that in
the annealed disorder case the large-z behavior of P (ann)(p) and n (ann)(p) for
p arbitrarily close but strictly less than unity is completely different from
the large-z behavior of these parameters in the case when p — 1. This
implies, of course, that p=1 is a special point. More specifically, we find
that for z ± (1 − p)−2 the disorder-averaged pressure per site obeys

bP (ann)(p)=ln(z)+ln(1 − p)+
1

(1 − p) z
−

(1 − 3p)
(1 − p)3 z2+O 1 1

z3
2 , (74)

which implies that the mean density follows:

n (ann)(p)=1 −
1

(1 − p) z
+

(1 − 3p)
(1 − p)3 z2+O 1 1

z3
2 . (75)

This asymptotic behavior should be contrasted to the asymptotic behavior
which holds in the p — 1 case. When z Q ., we find from Eqs. (36) and
(37) the following results:

bP (reg)(L=1 or 2)=
1
2

ln(z)+
1

2z1/2 −
1

48z3/2+
3

1280z5/2+O 1 1
z7/2

2 , (76)

and

n (reg)(L=1 or 2)=
1
2

−
1

4z1/2+
1

32z3/2 −
3

512z5/2+O 1 1
z7/2

2 . (77)

This signifies, in particular, that for p arbitrarily close but not equal to
unity, the mean density is equal to 1 as z=., while for p strictly equal to
unity the mean density n (reg)(L=1 or 2)=1/2. On physical grounds, such
a behavior can be understood as follows. In the annealed disorder case,
instead of averaging the logarithm of the partition function in Eq. (1), we
average the partition function itself and thus operate with an effective,
‘‘annealed’’ partition function in Eq. (43). Here, the strict constraint that
no two particles can occupy simultaneously neighboring sites if at least one
of them sits on the catalytic site, is replaced by a more tolerant condition
(see, Eq. (44)), which allows for such pairs to be present at any site, while
a penalty of 2 ln(1 − p) is to be paid. For any finite p < 1 such a penalty
can be overpassed by increasing the chemical potential. Thus for bm ±

− 2 ln(1 − p) (or, equivalently, for z ± (1 − p)−2) one expects essentially
the same behavior regardless of the value of p, and, in particular, that
n (ann)(p) Q 1 as z Q .. On the other hand, for p — 1 the penalty for having
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a pair of particles occupying neighboring sites becomes infinitely large and
can not be compensated by any increase of the chemical potential. The
behavior of n (ann)(p) as a function of z for different values of p is depicted
in Fig. 9 and compared with the behavior obtained for it in the case of
quenched disorder.

5. RANDOM PLACEMENT OF CATALYTIC SITES.

QUENCHED DISORDER

We finally turn to the most challenging situation—the case of
quenched randomness in the placement of catalytically active sites. We
begin by introducing one auxiliary function. Consider a chain of length
N which contains a fixed number N − Nnc of catalytic and hence, a fixed
number Nnc of non-catalytic sites, the latter being placed at the positions
{Xn}, n=1, 2,..., Nnc. We denote the partition function of such a chain as
ZN({Xn}). Evidently, ZN({Xn}) obeys Eqs. (1) and (4) with

zi=˛0, if the i ¥ {Xn},

1, otherwise.

Then, the logarithm of the partition function in Eq. (1), averaged over all
realizations of the quenched random variable {zi}, can be formally written
as

Oln ZN(z)P= C
N

Nnc=0
pN − Nnc(1 − p)Nnc C

{Xn}
ln ZN({Xn}), (78)

where the sum with the subscript {Xn} signifies that the summation extends
over all possible placements of Nnc non-catalytic sites on an N-chain.

Next, similarly to the approach used in the previous section, we intro-
duce a set of Nnc+1 intervals {ln} determined by consecutive non-catalytic
sites, such that ln=Xn − Xn − 1 (with X0=0) and lNnc+1=N+1− XNnc

. That
is, the first interval extends from the boundary (non-catalytic, unoccupied)
site i=0 to its closest non-catalytic neighboring site, the second interval
extends from this non-catalytic site to the following one, and so forth, while
the interval lNnc+1 goes from the last non-catalytic site inside the chain to the
boundary site i=N+1. In terms of these intervals, Eq. (78) can be rewritten
as

Oln ZN(z)P= C
N

Nnc=0
pN − Nnc(1 − p)Nnc C

{ln}
ln ZN({ln}), (79)

564 Oshanin et al.



where ZN({ln}) stands now for the partition function ZN({Xn}) in which
we have just expressed the positions of the non-catalytic sites using the set
{ln}, while the summation with the sign {ln} denotes now the summation
over all possible solutions of the equation, analogous to Eq. (49),

l1+l2+l3+ · · · +lNnc+1=N+1, (80)

where each li \ 1.
For each given set {ln} of intervals we have that the partition function

of an N-chain decomposes into that of smaller clusters,

ZN({ln})=ZN1({ln} | N)
1 ZN2({ln} | N)

2 ZN3({ln} | N)
3 · · · ZNN({ln} | N)

N , (81)

where ZK, (K=1, 2,..., N), is the partition function of the K-cluster, which
obeys Eqs. (31) and (32) or (33) (with N replaced by K), while NK({ln} | N)
denotes the {ln}-realization dependent number of K-clusters in an N-chain
with Nnc non-catalytic sites. Evidently, for each realization {ln} these
numbers NK({ln} | N) obey

N1({ln} | N)+2N2({ln} | N)+3N3({ln} | N)+ · · · +NNN({ln} | N)=N.
(82)

Note now that we have previously defined a K-cluster as being the
set of all sites connected consecutively by arcs (see Fig. 1). An equivalent
definition of the K-cluster, which uses now the language of the intervals
connecting consecutive non-catalytic sites is as follows: an interconnected
K-cluster, whose partition function is determined by Eqs. (31) and (32) or
(33) (with N replaced by K), is a subset of n (n [ [(K − 1)/2]) consequitive
intervals lr+1, lr+2, lr+3,..., lr+n from the entire set {ln}, where all intervals
(a) are greater than unity, (b) obey the conservation law lr+1+lr+2

+ · · · +lr+n=K − 1, and (c) are necessarily bounded by two intervals
(lr and lr+n+1) of length unity.

As we have already remarked, the latter condition implies that two
pairs of non-catalytic sites appear at the extremities of the segment con-
taining the K sites which automatically decomposes the chain into three
independent parts. On the other hand, the condition that all intervals lk,
k=r+1, r+2,..., r+n, are greater than unity insures that the K-cluster is
interconnected and does not break up into smaller subunits (see Fig. 7).
Consequently, we have from Eq. (81) that

ln ZN({ln})= C
N

K=1
NK({ln} | N) ln ZK, (83)
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l l l l lr+1 r+2 r+3 r+4r lr+5

N+1

Fig. 7. Example of a 10-cluster containing 4 inner intervals and 5 non-catalytic sites.

and Eq. (79) becomes

Oln ZN(z)P= C
N

Nnc=0
pN − Nnc(1 − p)Nnc C

N

K=1
NK(Nnc | N) ln ZK, (84)

where now NK(Nnc | N) reads

NK(Nnc | N)=C
{ln}

NK({ln} | N), (85)

and hence, defines the total number of K-clusters in all realizations of the
N-chain with a fixed number Nnc of non-catalytic sites.

The disorder-averaged pressure per site in the N-chain with random,
quenched placements of catalytic sites is then given by

bP (quen)(p)= lim
N Q .

1
N

C
N

K=1
wK, N(p) ln ZK, (86)

where now wK, N(p) is the statistical weight of the K-clusters in the
N-chain; wK, N(p) obeys

wK, N(p)= C
N

Nnc=0
pN − Nnc(1 − p)Nnc NK(Nnc | N). (87)

Below we determine wK, N(p) explicitly.

5.1. Calculation of the Weights wK, N( p)

To fix the ideas, we start with the trivial case of (K=1)- and (K=2)-
clusters. Consider a given realization {ln} of intervals. As may readily
notice, a (K=1)-cluster, or ‘‘a free site’’ in the terminology of Section 3,
appears as soon as one has three consecutively placed non-catalytic sites. In
other words, such a site appears as soon as any two consecutive intervals lr

and lr+1 are both equal to unity. Consequently, the number N1({ln} | N) of
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(K=1)-clusters in a given realization of the N-chain with Nnc non-catalytic
sites can be written as follows:

N1({ln} | N)= C
Nnc

r=1
d(lr, 1) d(lr+1, 1). (88)

Then, using the definition of the lattice delta-function in Eq. (10), we have
that the total number N1(Nnc | N) of (K=1)-clusters in all realizations of
the N-chain with a fixed number Nnc of non-catalytic sites obeys:

N1(Nnc | N)= C
Nnc

r=1
C
{ln}

d(lr, 1) d(lr+1, 1)

=
Nnc

2pi
C
{ln}

G
C

dy

y
y (;

Nnc − 1
r=1 lr − N+1)

=
Nnc

2pi
G
C

dy

y
1 y

1 − y
2Nnc − 1

y−(N − 1), (89)

which yields, using the expansion

1
(1 − y)Nnc − 1= C

.

n=Nnc − 2

1 n
Nnc − 2

2 y (n − Nnc+2), (90)

the following result:

N1(Nnc | N)=Nnc
1 N − 2

Nnc − 2
2×˛1, if the Nnc \ 2,

0, otherwise.

Consequently, the weight w1, N(p) of the (K=1)-clusters is given by

w1, N(p)= C
N

Nnc=2
pN − Nnc(1 − p)Nnc Nnc

1 N − 2
Nnc − 2

2

=N(1 − p)3+2(1 − p)2 p. (91)

Next, we turn to calculation of w2, N describing the weight of the (K=2)-
clusters. Two such clusters, as we have already remarked, may only appear
on the chain boundaries in the case when the sites i=1 or i=N (or both)
are catalytic, while two pairs of neighboring sites i=2, 3 and i=N − 1,
N − 2 are non-catalytic. Consequently, the number of (K=2)-clusters in a
given realization of an N-chain with Nnc non-catalytic sites is given by

N2({ln} | N)=d(l1, 2) d(l2, 1)+d(lNnc+1, 2) d(lNnc
, 1). (92)
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Hence,

N2(Nnc | N)=
1
pi

C
{ln}

G
C

dy

y
y (;

Nnc − 1
r=1 lr − N+2)=

1
pi

G
C

dy

y
1 y

1 − y
2Nnc − 1

y−(N − 2),
(93)

and, making use of the expansion in Eq. (90), we obtain

N2(Nnc | N)=2 1 N − 3
Nnc − 2

2×˛1, if the 2 [ Nnc [ N − 1,

0, otherwise.

Finally, we get

w2, N=2(1 − p)2 p. (94)

Now, in contrast to the very simple (K=1)- and (K=2)-clusters, clusters
of larger size may be composed of several types of intervals. Let
N (n)

K ({ln} | N) denote the number of K-clusters composed of n intervals in
a given realization of an N-chain containing exactly Nnc non-catalytic sites.
This number can be written down explicitly as

N(n)
K ({ln} | N)=J(S)

(n) ({ln}| K |N)+J(B)
(n) ({ln}| K |N), (95)

where

J (S)
(n) ({ln}| K |N)=2 1D

n

i=1
d(li \ 2)2 d(ln+1, 1) d(l1+l2+ · · · +ln, K) (96)

denotes the contribution from the K-clusters starting from either boundary
site, i.e., ‘‘surface’’ K-clusters, while

J (B)
(n) ({ln}| K |N)= C

Nnc − n

r=1
d(lr, 1)1 D

n+r

i=r+1
d(li \ 2)2

× d(lr+n+1, 1) d(lr+1+lr+2+ · · · +lr+n+1, K) (97)

represents the contribution of the ‘‘bulk’’ K-clusters, i.e., such K-clusters
which are entirely inside the chain and do not include any of the boundary
sites.

Summing N (n)
K ({ln} | N) over all the interval realizations {ln} obeying

the conservation law in Eq. (80), and next, performing in the result summation
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over all possible numbers n of subintervals in a K-cluster, we find that for
K ] 1 and K ] N, the total weight of K-clusters is given by

wK, N(p)=p (K − 1)/2(1 − p) (K+3)/2

×32FK
1= p

1 − p
2+(1 − p)(N − K − 1) FK − 2

1= p
1 − p

24 , (98)

while for K=N one has

wN, N(p)=pN/2(1 − p)N/2 32FN − 1
1= p

1 − p
2+= p

1 − p
FN − 2

1= p
1 − p

2

+= p
1 − p

FN
1= p

1 − p
24 . (99)

Details of these calculations are presented in Appendix B.

5.2. The Thermodynamic Limit N Q /

Now, having calculated the weights wK, N(p) of K-clusters explicitly,
we may rewrite Eq. (86) as the sum of three contributions

bP (quen)(p)=bP (quen)
1 (p)+bP (quen)

2 (p)+bP (quen)
3 (p), (100)

where the first term bP (quen)
1 (p) accounts for the contribution of (K=1)-

clusters,

bP (quen)
1 (p)= lim

N Q +.

1 1
N

w1, N ln Z1
2 , (101)

the second term denotes the contribution of a single spanning N-cluster,

bP (quen)
2 (p)= lim

N Q +.

1 1
N

wN, N ln ZN
2 , (102)

while bP (quen)
3 (p) takes into account all remaining possible K-clusters,

bP (quen)
3 (p)= lim

N Q +.

1 1
N

C
N − 1

K=2
wK, N(p) ln ZK

2 . (103)

In all these equations ZK stands for the partition function of the corre-
sponding K-cluster, which has been defined previously in Eqs. (31) and (32).
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Now, using the results in Eq. (91), we readily find that bP (quen)
1 (p)

obeys

bP (quen)
1 (p) — (1 − p)3 ln(1+z). (104)

Turning next to the contribution due to a single spanning N-cluster, we
have that it is given explicitly by

bP (quen)
2 (p)= lim

N Q .

1 pN/2(1 − p)N/2

N
32FN − 1

1= p
1 − p

2

+= p
1 − p

FN − 2
1= p

1 − p
2+= p

1 − p
FN

1= p
1 − p

24

×5ln LN+ln 1 z2y2
1

`1+4z
2− N ln(y2)62 . (105)

Taking into account the explicit representation of the Fibonacci polyno-
mials in Eq. (35), we notice that for p \ 1/2 their growth is suppressed by
the exponentially vanishing factor (1 − p)N/2 in the first line of Eq. (105).
On the other hand, for p < 1/2, the vanishing factor pN/2 in the first line
of Eq. (105) controls the large-N behavior. Consequently, as could be
expected on physical grounds, the contribution of a single spanning
N-cluster is exactly equal to zero in the thermodynamic limit.

Consider now the form of bP (quen)
3 (p) in Eq. (103). Taking into

account the explicit form of ZN in Eqs. (31) and (32), and expanding LN

in Eq. (32) in Taylor series in powers of (y2/y1) < 1, we may rewrite
bP (quen)

3 (p) in Eq. (103) as

bP (quen)
3 (p)= lim

N Q .

1 1
N
1 C

N − 1

K=2
wK, N(p)2 ln 1 z2y2

1

`1+4z
2

−
1
N
1 C

N − 1

K=2
KwK, N(p)2 ln y2

−
1
N

C
N − 1

K=2
wK, N(p) C

.

n=1

(−1)nK

n
1y2

y1

2n(K+2)2 . (106)

Evaluation of the sums entering Eq. (106) is rather cumbersome and we
present the details of such calculations in Appendix C.

Taking into account both the contribution of the (K=1)-clusters in
Eq. (104) and that of bP (quen)

3 (p) in Eq. (106) (see Appendix C) we arrive
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at the desired explicit expression describing the disorder-averaged pressure
P (quen)(p) per site in the quenched disorder case:

bP (quen)(p)=(1 − p)3 ln(1+z)+p(5 − 7p+3p2) ln 1`1+4z+1

2
2

−
p(1 − p)2

2
ln(1+4z)

+p(1 − p)4 C
.

n=1

(−1)n

n
(y2/y1)5n

1 − p(−1)n (y2/y1)n − p(1 − p)(y2/y1)2n ,

(107)

which can be reformulated, (by expanding the denominator in elementary
fractions), in the following form:

bP (quen)(p)=(1 − p)3 ln(1+z)+p(5 − 7p+3p2) ln 1`1+4z+1

2
2

−
p(1 − p)2

2
ln(1+4z)

−
p(1 − p)4

`p(4 − 3p)
C
.

m=0

1 1
Xm

+

−
1

Xm
−

2 ln 11 − (−1)m+1 1y2

y1

2m+52 ,

(108)

where the X± are given by

X±=
1

2p(1 − p)
[ − p ± `p(4 − 3p)]. (109)

We note here that the first correction to the thermodynamic limit result
in Eqs. (107) or (108), (which shows how fast the thermodynamic limit is
approached with respect to the chain’s length), should be proportional to
the first inverse power of N, as follows from the expansion Eq. (C.12) (see
Appendix C).

We now consider the asymptotical behavior of P (quen)(p) for different
limiting cases. In the asymptotic limit p Q 0 we find from Eq. (107) that

bP (quen)(p)=ln(1+z)+ln 11+3z+z2

(1+z)3
2 p+O(p2), (110)

where the first term represents the Langmuir pressure, and the second
one—the small-p correction to it. Note that already the first correction
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term differs significantly from the first correction term to P (ann)(p) found in
the annealed disorder case, Eq. (61). Next, in the limit p ’ 1, we find that
P (quen) obeys

bP (quen)(p)=ln 1`1+4z+1

2
2+ln 1 (1+`1+4z)2

4 `1+4z
2(1 − p)2+O((1 − p)3),

(111)

in which expansion the second term is also different from the one obtained
in the annealed disorder case, Eq. (63).

Now, turning to the analysis of the large-z behavior of P (quen) we notice
that the behavior differs completely for p — 1 and for p < 1, which signifies
that here, (as in the annealed disorder case), p=1 is a special point. In
the case p — 1 we have that on the righthand side of Eq. (107) all terms
except for the second one vanish and hence, P (quen)(p)=P (reg)(L=1 or 2),
Eq. (36). Consequently, for p — 1 the large-z behavior of P (quen)(p) obeys
Eq. (76), similar to P (reg)(L=1 or 2) and to P (ann)(p), which is, of course,
not surprising. On the other hand, for p < 1 the large-z behavior is rather
different from the behavior observed in the annealed disorder case. Here,
we find for z ± (1 − p)−2 that P (quen)(p) obeys

bP (quen)(p)=
(p2 − p+1)

p2 ln(z)+O(1), (112)

i.e., in the quenched disorder case the prefactor in the leading z-term
depends on p, while in the annealed disorder case this prefactor was found
to be independent of p, which caused a rather strange behavior of the mean
particle density.

Differentiating Eq. (108), we find that the particle density in the
quenched disorder case is explicitly given by

n (quen)(p)=(1 − p)3 z
1+z

+p(5 − 7p+3p2)
2z

1+4z+`1+4z
−

2p(1 − p)2 z
1+4z

−
4p(1 − p)4 z

`p(4 − 3p)(1+4z)(1+`1+4z)2

× C
.

m=0

1 1
Xm

+

−
1

Xm
−

2 (m+5)(− y2
y1

)m+4

(1 − (− y2
y1

)m+5)
. (113)

We note that again this result differs considerably from the mean-field
prediction n̄ — 0 (Eq. (8) with K=.).
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Fig. 8. Mean particle density n versus mean density p of catalytic sites for different values of
z=exp(bm). Curves with signs (ann) and (quen) depict the behavior of the mean density for
annealed and quenched random distributions, respectively.

From Eq. (113) we find then that the asymptotic behavior of n (quen)(p)
in the small-p limit obeys

n (quen)(p)=
z

1+z
−

z2(4+z)
(1+z)(1+3z+z2)

p+O(p2), (114)

while in the limit p ’ 1 it follows

n (quen)(p)=n (reg)(L=1 or 2)+
4z2

(1+4z)(1+2z+`1+4z)
(1 − p)2

+O((1 − p)3), (115)

in which equations the first corrections to the Langmuir and the regular
cases depend very differently on the activity z when compared to the
annealed disorder case. Note also that, as depicted in Fig. 8, for any fixed z
the mean particle densities in the annealed and in the quenched disorder
cases show a completely different behavior as functions of the mean den-
sity p. The difference becomes more pronounced with increasing z.

Note that the catalytic efficiency in the annealed disorder case turns
out to be lower than in the quenched case, as can be inferred from the fact
that the A particle density is always higher in the former case (see Fig. 9).

Finally, we find that as z Q ., the mean particle density n (quen) tends to

lim
z Q .

n (quen)(p)=1 −
p

1+p2 , (116)
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Fig. 9. Mean particle density n in the annealed and quenched disorder cases, Eqs. (66) and
(113), versus the activity z for different values of p. The notations are the same as in Fig. 8.

which contradicts apparently the behavior observed in the annealed dis-
order case, where we found that limz Q . n (ann)(p) — 1, regardless of the
value of p, (provided that p < 1); it also differs from our predictions for the
case of a regular placement of catalytic sites, for which limz Q . n (reg)(L)=
1 − p for p [ 1/2 and limz Q . n (reg) — 1/2 for p=1/2 and p=1. Note also
(despite of the fact that here p=1 also appears as a special point in regard
to the large-z behavior of the disorder-averaged pressure) that here, con-
trary to the annealed disorder case, n (quen)(p) does not show any disconti-
nuity in the limit p Q 1 at z=..

To close this final section we discuss the behavior of the compressi-
bility in the quenched disorder case. From Eqs. (108) and (113) we find
that in the small-p limit the compressibility follows

b−1k (quen)
T =

1
z
+

(7+6z+2z2) z
(1+3z+z2)2 p+O(p2), (117)

while in the opposite limit p ’ 1 it is described by a more complicated
expression of the form:

b−1k (quen)
T =k (reg)

T (L=1 or 2)+
3z `1+4z(`1+4z+1 − 2z)

2(4z3+9z2+6z+1)
(1 − p)3

+O((1 − p)4). (118)

574 Oshanin et al.



4.9

4.95

5

5.05

5.1

5.15

5.2

0 0.2 0.4 0.6 0.8 1

p

kT

(ann)

(quen)

z = 0.2

2

2.05

2.1

2.15

2.2

2.25

2.3

0 0.2 0.4 0.6 0.8 1

p

kT

(ann)

(quen)

z = 0.5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 0.2 0.4 0.6 0.8 1

p

kT

(ann)

(quen)

z = 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

p

kT

(ann)

(quen)

z = 5

Fig. 10. Compressibility kT as a function of p for the annealed and for the quenched
disorder cases.

It follows then that the coefficient in the term proportional to (1 − p)3 is
positive only for z < 2 and negative for z > 2. This implies, in view of the
discussion presented at the end of the previous section, that for z < 2 the
compressibility k (quen)

T is a non-monotonic function of p. On the other hand,
for z > 2 the compressibility k (quen)

T seems to be always increasing with p.
This is distinct from the behavior found in the annealed disorder case when
k (ann)

T is non-monotonic function for any z.
In Fig. 10 we depict the behavior of the compressibility as a function

of p in the quenched disorder case and compare it to the behavior observed
in the annealed disorder case. These figures suggest that for z < 2 the
compressibility k (quen)

T is a non-monotonic function of p, while for z > 2, (as
exemplified here by the case z=5) it is monotonic. We also find that the
most dramatic difference between the three different modes of placing the
catalytic sites is seen in kT.

6. CONCLUSION

In this paper we have studied the properties of the catalytically-activated
annihilation A+A Q 0 reaction on a one-dimensional lattice, in which some
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lattice sites possesses special ‘‘catalytic’’ properties; reaction takes place when
at least one of two neighboring adsorbed A particles, undergoing continuous
exchanges with a particles reservoir, sits on a catalytic site.

We have focused here on three different situations. First, we have
considered the case when the catalytic sites are placed periodically, forming
a regular sublattice, in which case we obtained the exact solution in a
straightforward manner. Next, we turned to the disordered case and
studied the reaction properties for both annealed and quenched random-
ness in the distribution of the catalytic sites. We have shown that in the
annealed disorder case the model reduces to a one-dimensional lattice gas
with an effective three-particle repulsive interaction. We have developed a
combinatorial formulation of the model which allowed us to obtain the
exact solution. Next, we have demonstrated that in the (most complex)
situation with quenched disorder the problem of computation of the
average logarithm of the partition function can be reduced to the problem
of the enumeration of all possible interconnected clusters in finite lattices
with a fixed number of catalytic sites. We have calculated the weights of
these clusters exactly, using a combinatorial procedure, and we have found
an exact expression for the disorder-averaged pressure.

Apart from the results on the disorder-averaged pressure, we have
determined exact asymptotic expressions for the mean-particle density and
for the compressibility. We have shown that the behavior of these properties
is substantially different in systems with annealed and with quenched dis-
order. Both differ considerably from the mean-field result of Eq. (8). Further-
more, we have observed that in systems with annealed disorder the mean
particle density tends to unity in the limit when the chemical potential m

tends to infinity, and this for any limited catalytic sites density. On the other
hand, we have established that the mean particle density in the quenched
disorder case tends to a finite value, namely to (1 − p+p2)/(1+p2) < 1 when
m tends to infinity. As well, we have demonstrated that in the annealed dis-
order case the compressibility appears to be a non-monotonic function of p
for any m, while in the quenched disorder case the compressibility shows a
non-monotonic behavior as a function of p only for m [ mcrit=b−1 ln(2).

We close by noting that the model studied here furnishes another
example (see, e.g., refs. 19, 36–38) of a 1D Ising-type system with random
multisite interactions which admits an exact solution.

APPENDIX A

The partition function in Eq. (55) can be represented as

OZN(z)P=I1 − I2, (A.1)
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where

I1=
(z(1 − p))N+1

2pi
G
C

dy

y
y−N 11 − p

p
+y − y22

×1z(1 − p)2

p
−

(1 − p)
p

(1+z(1 − p)) y − y2+y32−1

, (A.2)

and

I2=
(1 − p)
2pip

G
C

dy(1 − y)11 − p − py+(1 − p) y2

(1 − p)(1 − y)
2N+2

×1z(1 − p)2

p
−

(1 − p)
p

(1+z(1 − p)) y − y2+y32−1

. (A.3)

To evaluate the integrals in Eqs. (A.2) and (A.3), let us first express
the denominator of the integrands in terms of elementary fractions; this
gives

1

(z(1 − p)2

p − (1 − p)
p (1+z(1 − p)) y − y2+y3)

=−
1

t1(t1 − t2)(t1 − t3)(1 − t−1
1 y)

−
1

t2(t2 − t1)(t2 − t3)(1 − t−1
2 y)

−
1

t3(t3 − t2)(t3 − t1)(1 − t−1
3 y)

, (A.4)

where t1, t2, and t3 are three roots of the cubic equation

t3 − t2 −
(1 − p)

p
(1+z(1 − p)) t+

z(1 − p)2

p
=0. (A.5)

Expanding next (1 − t−1
i y) in a Taylor series with respect to y and taking

advantage of the definition of the lattice delta-function in Eq. (10), we find
that I1 of Eqs. (A.2) is given by

I1=3 pt2
1 − pt1 − (1 − p)

p(t1 − t2)(t1 − t3)
1z(1 − p)

t1

2N+1

+
pt2

2 − pt2 − (1 − p)
p(t2 − t1)(t2 − t3)

1z(1 − p)
t2

2N+1

+
pt2

3 − pt3 − (1 − p)
p(t3 − t2)(t3 − t1)

1z(1 − p)
t3

2N+14 . (A.6)
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On the other hand, the function in Eq. (A.4) and also the expression

11 − p − py+(1 − p) y2

(1 − p)(1 − y)
2N+2

(A.7)

are both analytic functions of the variable y. Hence, in virtue of Eq. (10), it
follows that the integral in Eq. (A.3) equals zero and hence, I2=0.

Furthermore, in terms of the auxiliary functions R and Q, Eqs. (57)
and (58), the roots of the cubic equation (A.5) can be written as follows: (46)

t1=
1
3
+[(R+`Q3+R2)1/3+(R − `Q3+R2)1/3], (A.8)

t2=
1
3

−
1
2

[(R+`Q3+R2)1/3+(R − `Q3+R2)1/3]

−
i `3

2
[(R+`Q3+R2)1/3 − (R − `Q3+R2)1/3], (A.9)

and

t3=
1
3

−
1
2

[(R+`Q3+R2)1/3+(R − `Q3+R2)1/3]

+
i `3

2
[(R+`Q3+R2)1/3 − (R − `Q3+R2)1/3]. (A.10)

Note next that the characteristic sum Q3+R2 is less or equal to zero for
any value of the parameters p and z; hence, all three roots of the cubic
equation (A.5) are real. Noticing also that the ratio R/`− Q3 is bounded,
− 1 [ R/`− Q3 [ 1, we find that the roots can be expressed in a more
convenient fashion as:

t1=
1
3
+2 `− Q cos 11

3
arccos 1 R

`− Q3
22 , (A.11)

t2=
1
3

− 2 `− Q sin 11
3

arcsin 1 R

`− Q3
22 , (A.12)

and

t3=
1
3

− 2 `− Q sin 1p

6
+

1
3

arccos 1 R

`− Q3
22 . (A.13)
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Noticing now that all roots ti, (i=1, 2, 3), of Eq. (A.5) obey

pt2
i − pti − (1 − p)=2(1 − p)(ti − 1)1z(1 − p)

2ti

2 , (A.14)

while

t1 − t2=2 `− 3Q cos 1p

6
+

1
3

arccos 1 R

`− Q3
22 , (A.15)

t1 − t3=2 `− 3Q cos 1p

6
−

1
3

arccos 1 R

`− Q3
22 , (A.16)

and

t2 − t3=2 `− 3Q sin 11
3

arccos 1 R

`− Q3
22 , (A.17)

and substituting the results in Eqs. (A.11) to (A.13) into Eq. (A.6), we find,
eventually, the result in Eq. (56).

APPENDIX B

Summing N (n)
K ({ln} | N) over all the interval realizations {ln} obeying

the conservation law in Eq. (80), and using the integral representation of
the Kronecker function in Eq. (10), we obtain, after some straightforward
calculations, that:

C
{ln}

J (S)
(n) ({ln}| K |N)=2 1K − 1 − n

n − 1
21 N − K − 1

Nnc − n − 1
2 , (B.1)

while

C
{ln}

J (B)
(n) ({ln}| K |N)=(Nnc − n)1K − 2 − n

n − 1
21 N − K − 1

Nnc − n − 2
2 . (B.2)

Performing next the summation over all possible numbers n of subintervals
in a K-cluster, we find that the total number NK(Nnc | N) of K-clusters for
all possible realizations of an N-chain containing a fixed number Nnc of
non-catalytic sites is given by
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NK(Nnc | N)=(1 − d(K, N))(1 − d(K, 1))32 C
[K/2]

n=1

1K − 1 − n
n − 1

21 N − K − 1
Nnc − n − 1

2

+ C
[(K − 1)/2]

n=1
(Nnc − n)1K − 2 − n

n − 1
21 N − K − 1

NNnc
− n − 2

24

+d(K, N)32 C
[K/2]

n=1
d(n, Nnc)1

K − 1 − n
n − 1

2

+ C
[(K − 1)/2]

n=1
d(n, Nnc − 1)1K − 2 − n

n − 1
2

+ C
[(K+1)/2]

n=1
d(n, Nnc+1)1K − n

n − 1
2 4

+d(K, 1)(1 − d(Nnc, 1))(1 − d(Nnc, 0)) Nnc
1 N − 2

Nnc − 2
2 . (B.3)

Now, representing the weights wK, N(p) of K-clusters as

wK, N(p)=w(B)
K, N(p)+w(S)

K, N(p), (B.4)

where w (B)
K, N(p) and w (S)

K, N(p) denote the weights of the ‘‘bulk’’ and ‘‘sur-
face’’ K-clusters, respectively, we find, summing over all possible numbers
Nnc of non catalytic sites, that these weights are defined explicitly by

w (B)
K, N(p)=pN C

[(K − 1)/2]

n=1

1K − 2 − n
n − 1

2 C
.

Nnc=0
(Nnc − n)11 − p

p
2Nnc 1 N − K − 1

Nnc − n − 2
2

(B.5)

and

w (S)
K, N(p)=2pN C

[(K − 1)/2]

n=1

1K − 1 − n
n − 1

2 C
.

Nnc=0

11 − p
p

2Nnc 1 N − K − 1
Nnc − n − 1

2 . (B.6)

Noticing next that

C
.

Nnc=0
(Nnc − n)11 − p

p
2Nnc 1 N − K − 1

Nnc − n − 2
2=

(1 − p)n+2

pn+N − K+1 [(1 − p)(N − K − 1)+2],

(B.7)
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we obtain that w (B)
K, N(p) obeys

w (B)
K, N(p)=(1 − p)2 pK − 1 C

[(K − 1)/2]

n=1
[(1 − p)(N − K − 1)+2]

×1K − 2 − n
n − 1

21 (1 − p)
p

2n

, (B.8)

and consequently, in virtue of the definition of the Fibonacci polynomials,
Eq. (35), the total weight of the ‘‘bulk’’ K-clusters can be expressed by

w (B)
K, N(p)=p (K − 1)/2(1 − p) (K+3)/2

× [(1 − p)(N − K − 1)+2] FK − 2
1= p

1 − p
2 . (B.9)

In similar fashion, we find that the total weight of ‘‘surface’’ K-clusters
w (S)

K, N(p) obeys

w (S)
K, N(p)=2pK/2(1 − p) (K+2)/2 FK − 1

1= p
1 − p

2 . (B.10)

Combining these results, we arrive eventually at the general formulae in
Eqs. (98) and (99).

APPENDIX C

In order to evaluate the limiting behavior of the rather complicated
sums entering Eq. (106), it is expedient to introduce an auxiliary generating
function of the form:

F(t, y)= C
.

N=3
GN(t) yN, (C.1)

where

GN(t)= C
N − 1

K=2

wK, N(p)
N

tK. (C.2)

Exactly Solvable Model of Reactions on a Random Catalytic Chain 581



Once F(t, y) and GN(t) are determined, one obtains bP (quen)
3 (p) directly.

As one may verify readily, bP (quen)
3 (p) in Eq. (106) can be expressed in

terms of GN(t) as

bP (quen)
3 (p)=G.(t=1) ln 1 z2y2

1

`1+4z
2−

“G.(t)
“t

:
t=1

ln y2

− C
n=1

(y2/y1)2n

n
G.

1t=1−
y2

y1

2n2 . (C.3)

We turn now to the calculation of the generating function in Eq. (C.1).
Substituting the explicit form of wK, N(p), Eq. (98), into Eq. (C.2), and this
in Eq. (C.1), and interchanging then in the final result the order of sum-
mations (over K and N), we find that F(t, y) can be represented as a sum
of two components,

F(t, y)=F1(t, y)+F2(t, y), (C.4)

where

F1(t, y) —
(1 − p)5/2

p1/2 C
.

K=2
(p(1 − p) t2)

K
2 FK − 2

×1= p
1 − p

21 C
.

N=K+1

N − K − 1
N

yN2 , (C.5)

and

F2(t, y)=2
(1 − p)3/2

p1/2 C
.

K=2
(p(1 − p) t2)

K
2 FK

1= p
1 − p

21 C
.

N=K+1

yN

N
2 . (C.6)

Using next the evident integral equality

1
N

=F
1

0
dv vN − 1, (C.7)

as well as the explicit expression of the generating function of the Fibonacci
polynomials (40)

C
.

K=1
FK(x) yK=

y

y2+xy − 1
(C.8)
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we obtain the following integral representations of F1(t, y) and F2(t, y):

F1(t, y)=(1 − p)4 py5t3 F
1

0

v4 dv
(1 − yv)2

1
(1 − pvyt − p(1 − p)(vyt)2)

, (C.9)

and

F2(t, y)=2(1 − p)3 p3/2y3t F
1

0

v2 dv
(1 − yv)

1 − p+vyt

(1 − pvyt − p(1 − p)(vyt)2)
. (C.10)

Now, the asymptotic behavior of behavior of GN(t) as N Q . can be
deduced, in a standard fashion, by analysing the critical behavior of the
generating function F(t, y) in the vicinity of the singularity closest to
the origin; (47) that is, here, in the vicinity of y=1. Expanding F(t, y) in the
vicinity of the singular point y=1, we obtain

F(t, y)=
(1 − p)4 pt3

1 − pt − p(1 − p) t2

1
1 − y

+
2(1 − p)3 p3/2y3t(1 − p+t)

1 − pt − p(1 − p) t2 ln(1 − y)+o(ln(1 − y)). (C.11)

Next, in virtue of the Tauberian theorems, (47) it follows that GN(t) exhibits
the following asymptotical behavior as N Q .:

GN(t) ’
p(1 − p)4 t3

1 − pt − p(1 − p) t2 −12(1 − p)3 p3/2y3t(1 − p+t)
1 − pt − p(1 − p) t2

2 1
N

+o 1 1
N
2 ,

(C.12)

and consequently, we find from Eq. (C.12) that the particular values of the
function GN(t) entering Eq. (C.3) are given explicitly by:

G.(t=1)=p(1 − p)2;
“G.(t)

“t
:
t=1

=p(p2 − 3p+3), (C.13)

and

G.
1t=1 −

y2

y1

2n2=
p(1 − p)4 ( − y2/y1)3n

1 − p(−1)n (y2/y1)n − p(1 − p)(y2/y1)2n . (C.14)
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Substituting the results in Eqs. (C.13) and (C.14) into Eq. (C.3), we thus
find that bP (quen)

3 (p) obeys

bP (quen)
3 (p)=p(5 − 7p+3p2) ln 1`1+4z+1

2
2−

p(1 − p)2

2
ln(1+4z)

+p(1 − p)4 C
.

n=1

(−1)n

n
(y2/y1)5n

1 − p(−1)n (y2/y1)n − p(1 − p)(y2/y1)2n ,

(C.15)

which, in combination with the expression for bP (quen)
1 (p), Eq. (104), leads

to Eq. (107).
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